The Synthesis of *(5R)-* **and (SS)-[S-JH)-L-Ornithine**

Ronald J. *Parry*,* Shyhchen Ju and Bill J. Baker

Department of Chemistry. Rice University, Houston Texas 77251

Summary

A practical synthesis of *(5R)-* and (5S)-[5-3H]-L-ornithine is described. The key steps in the synthesis are the reduction of [formyl-3H]-5-hexenal with S- or R-Alpine Borane to *(1R)*- and *(1S)*-[1-3H]-5-hexen-1-ol and the use of the Evans electrophilic azidation of chiral imide enolates to introduce the α -amino group of ornithine. The stereochemistry expected for the Alpine Borane reduction was verified by NMR analysis of the camphanate ester derived from reduction of 16 *rmyl*-2H₁-5-hexenal with R-Alpine Borane.

Key Words: L-ornithine. tritium, stereospecific labeling, Alpine Borane, electrophilic azidation, camphanate ester.

Introduction

In conjunction with biosynthetic studies of the nucleoside antibiotic sinefungin,' a need **arose** for *(5R)-* and (5S)-[5-3H]-L-omithine. The synthesis of these forms of labeled ornithine had been previously reported by Townsend **er** *a1.,2* but the final step of the synthesis proceeded in very low yield. We therefore devised a more satisfactory synthesis of *(5R)-* and (5S)-[5-3H]-L-omithine.

Results and Discussion

The synthesis (Scheme **1)** began with 5-hexen-1-01 **(1)** which was oxidized with PCC to 5-hexenal (2). Reduction of 2 with sodium $[3H]$ borohydride (100mCi) gave (1RS)- $[1-3H]$ -5-hexen-1-01 **(la)** in quantitative yield (radiochemical yield 26%). Oxidation of the tritiated alcohol followed by reduction³ of the labeled aldehyde with $S₋$ or $R₋$ Alpine Borane proceeded smoothly to produce (1R)- and **(lS)-[l-3H]-5-hexen-l-01 (3.4).** respectively, (yield **44%** for two steps). The stereospecifically tritiated alcohols having been obtained, they were converted to the corresponding mesylates *(95%).* The mesyl groups were then displaced by treatment of the sulfonate esters with sodium azide in DMF to produce the stereospecifically mtiated azides *5* and 6. Since the displacement reaction takes place at a primary center, it was expected to proceed with inversion of configuration.4 The tritiated azides *5* **and 6** were next oxidized with ruthenium hichloride and sodium periodate5 to yield the 5-azidopentanoic acids *7* and 8 (50% yield from the mesylates). These stereospecifically tritiated acids were then coupled to (S) -(-)-4-benzyl-2-oxazolidinone by standard methods6 *(56%).* generating the acylated oxazolidinones 9 and **10.** Treatment of **9** and **10** with

potassium bis(trimethy1silyl)amide followed by **2,4,6-triisopropylbenzenesulfonyl** azide7 resulted in the stereospecific introduction of an azide function with formation of the diazides **11** and **12** *(46- 66%).* The yield of the azidation reaction was highly dependent **upon** the quality of the base employed and the diazides exhibited chromatographic behavior that was almost identical to that of the monoazides. Conversion of the diazides into stereospecifically mtiated forms of L-omithine **(13.14)** was accomplished by base-catalyzed removal of the chiral auxiliary (76%) followed by reduction of the azide functions with hydrogen and palladium (92%). The overall chemical yield of L-omithine was *ca.* 8% while the overall radiochemical yield was *cu.* **4%.** The stereospecificity of the electrophilic azidation reaction was determined by measurement of the optical rotation of unlabeled L-omithine hydrochloride obtained via the route in Scheme **1.** The rotation exhibited by the

L-omithine indicated that the enantiomeric excess of the L-isomer was 82.5%. For reasons that are unclear, this degree of stereospecificity is somewhat lower than has been reported for other amino acids synthesized by the electrophilic azidation process.7

The absolute configuration of the isotopic label in the resulting ornithines was determined by analyzing the stereochemistry of a sample of $(1\text{-}2H_1)$ -5-hexen-1-ol (17) prepared from $16\sigma m v l \text{-} 2H_1$]-5-hexenal (16) by reduction with R-Alpine Borane (Scheme 2). The synthesis of 16 was accomplished by oxidation of 5-hexen-1-01 (1) to 5-hexenoic acid **(15)** with PDC in **DMF?** reduction of the acid to $(1-2H₂)-5$ -hexenol with lithium aluminum deuteride, and oxidation of the dideuterio nclear, this degree of stereospecificity is somewhat lower that
cids synthesized by the electrophilic azidation process.⁷
The absolute configuration of the isotopic label in the r
nalyzing the stereochemistry of a sampl Example 1 and the statement of the synthesis of 16 was

1-ol (17) prepared from [formyl-²H₁].

1. The synthesis of 16 was

cid (15) with PDC in DMF,⁸ reduction

de, and oxidation of the dideuterio

LIAID₄ CD₂OH

Scheme *2: Analysis of Chiralify of (7S)-(1-*Hf)-5-Hexen- 7-01*

19

alcohol to 16 with PCC. **On** the basis of much literature precedent? the reduction of **16** with R-Alpine Borane was anticipated to yield **(IS)-(** 1-2H~)-5-hexen- **1-01 (17).** This expectation was confirmed by conversion of 17 into its (-)-camphanate ester **18,** reduction of the ester to yield hexanoyl camphanate **(19),** and analysis of the chirality of the deuterium label in 19 by the method of Zagalak and Gerlach,¹⁰ which has been widely employed in stereochemical studies.¹¹ The ¹H NMR spectrum of 19 in the presence of the shift reagent Eu(DPM)₃ revealed that the isotopic label had the expected **S** configuration and that the optical purity of the label was *ca.* 90%.12

To summarize, a useful synthesis of (5R)- and (5S)-[5-3H]-L-omithine has **been** developed. The synthesis proceeds in satisfactory overall yield **and** it allows the preparation of L-omithine with high specific activity. since the introduction of tritium is accomplished with labeled sodium borohydride.

Experimental Section

General Methods. ¹H and ¹³C NMR spectra were recorded on either a Jeol FX-90Q (90MHz) or an IBM AF300 (300MHz) spectrometer using CDC13 as solvent, unless otherwise noted. Chemical shifts are given in parts per million downfield from tetramethylsilane. All melting points were taken on **a** Fischer-Johns melting point apparatus and are uncorrected. Mass spectra were run on Finnegan 3300 and CEC 11 1021-1 10B mass spectrometers. Analytical thin layer chromatography was performed with precoated Merck silica gel type 60 F-254 glass plates (0.25 mm layers) or with Merck cellulose F glass plates (0.1 mm layers). Column chromatography was performed using Merck silica gel (200-400 mesh) or Merck minocrystalline cellulose (Avicel). Chemical reagents were purchased from Aldrich Chemical Company, while the tritiated sodium borohydride was obtained from American Radiolabeled Chemicals, Inc.

Synthesis **of** L-Ornithine.

(IRS)-[I-3H]-S-Hexenol **(Is).** 5-Hexenol (1.0 **g,** 10 **mM)** was added with stimng under nitrogen to a suspension of PCC (3.23 g, 15 mM) in 40 **mL** of dichloromethane. After **1.5** h, the mixture was cooled to 4° C and stirred at this temperature for an additional 12 h. Diethyl ether (20 mL) was then added and the crude supernatant passed through a Florisil column to remove highly colored impurities. Elution of the column with additional ether yielded a dilute solution of 5-hexenal (2) which was concentrated by removal of the ether at **40"** C. The crude 5-hexenal was dissolved in 30 mL of absolute ethanol, the solution cooled in an ice bath, and sodium $[3H]$ borohydride (0.64 mM, 100 mCi) added with stirring. The solution was then stirred for 2.5 h, at the end of which time unlabeled **sodium** borohydride (0.60 g, 16 mM) was added and the reduction allowed to prnceed overnight. The solvent was removed *in vucuo* and the residue partitioned between 15% aqueous NaOH and dichloromethane. After repeated extraction of the aqueous phase, the combined organic phases were dried over anhydrous MpS04, and the solvent removed *in vacuo.* The crude alcohol was purified by flash chromatography (SiO₂, hexane:ethyl acetate, 4:1) to yield 1.0 g *(ca.* 100%) of *(IRS)-[* I-3H]-5-hexenol with a total activity of 26 mCi: TLC **(Si@,** hexane:ethyl acetate, 41, **Rf** = 0.36); IH NMR: **6** 5.5-6.0 (m. lH, vinyl H), 5.0 (m, 2 H. vinyl H), 3.6 (I. 2 H, CH20H). 2.0 (m. 2 H. allylic CH2). 1.4-1.8 **(m,** 4 H); I3C NMR: d 138.5, 114.4, 62.2, 33.3, 31.9, 24.9.

 $(1R)$ - $[1-3H]$ -5-Hexen-1-ol (3). By the procedure outlined above, $(1RS)$ - $[1-3H]$ -5-hexen-1-01 (1.0 g, 26 mCi) was oxidized with PCC to [formyl-3H]-5-hexenal *(cu.* 0.98 g). The crude

aldehyde was dissolved in *dry* THF **(10** mL) and the solution added dropwise with stimng under nitrogen to **20** mL of a *0.5* M solution of S-Alpine Borane in THF. After **10** min the mixture was heated at reflux for **2** h and then allowed to cool to room temperature. The solvent was removed *in vacuo,* the residue dissolved in diethyl ether *(50* mL), and the resulting solution cooled in an ice bath. Ethanolamine **(0.66** mL, **1.06** eq.) was added and the mixture stirred on ice for **20** min. The white precipitate was removed by vacuum filtration and the filtrate concentrated *in vacuo* to give a yellowish oil that was purified by flash chromatography (SiO₂, hexane: ethyl acetate, 4:1). The yield of pure **(1R)-[l-3H]-5-hexen-l-ol** was 0.44 **g (44%).**

(**1R)-[1-3H]-5-Hexenyl Methane Sulphonate.** The sample of **(lR)-[** I-3H]-5-hexen-l-ol obtained from S-Alpine Borane reduction was diluted with unlabeled alcohol to give a total weight of **1.0** g **(10** mM). The diluted alcohol was dissolved in dichloromethane (15 mL) and triethylamine **(2.0** mL, **14.3** mM) added. The resulting solution was cooled to 0" C and freshly distilled methanesulfonyl chloride **(1.0** mL, **12.9** mM) added dropwise with stirring. The reaction mixture was then allowed to warm to room temperature while stirring overnight. The mixture was poured into a mixture of ice and saturated NaHCO₃ solution. The organic layer was removed, and the aqueous layer extracted with **2** x **10** mL of dichloromethane. The combined organic layers were dried over anhydrous MgS04, and the solvent removed *in vacuo* to yield **1.72 g (95%)** of tritiated mesylate as a colorless oil: TLC (SiO₂ hexane:ethyl acetate, $4:1$, $R_f = 0.24$); ¹H NMR: δ 5.65 (1 H, m, vinyl H), *5.0* **(2** H, m, vinyl H), **4.2 (2** H, t, CH~OMS), **3.0 (3 H, s,** CH3S02). **2.1 (2** H, d, allylic H). **1.4-2.0 (m, 4** H). The preparation of the unlabeled mesylate has been previously reported.'3

(5S)-[5-3Hl-5-Azidopentanoic Acid (7). The stereospecifically tritiated (1R)-mesylate **(1.72** g, **9.6** mM) was dissolved in *dry* DMF (20 mL), sodium azide **(1.43** g, **22** mM) added. and the mixture stirred for **20** h at mom temperature. Water **(20** mL) was added and the diluted reaction mixture extracted several times with diethyl ether. The combined ether extracts were back washed with water and then dried over anhydrous MgSO₄. The ether was removed in vacuo at room temperature in order to avoid loss of the relatively volatile azide. The crude azide was chromatographed (SiO₂, diethyl ether) and the fractions containing the $(5S)$ -[5⁻³H]-5-azido-1-hexene were carefully concentrated *in vacuo.* The purified azide was dissolved in a mixture of carbon tetrachloride (21.5 mL) and acetonitrile **(21.5** mL). Water **(35** mL) and sodium periodate **(0.15** g. **47** mM) were added, and the mixture cooled in an ice-bath. Ruthenium trichloride trihydrate **(0.07** g, **0.26** mM) was added with stirring and stirring continued for **10** min at **0"** C, after which time the ice-bath was removed and stirring at room temperature continued overnight. Dichloromethane **(40** mL) was then added, the two phases separated, and the aqueous phase extracted repeatedly with dichloromethane. The combined organic phases were dried (MgS04) and concentrated *in vacuo* to give **a** dark oil. This oil was chromatographed (Si02, hexane:ethyl acetate, **1:l)** to yield **0.61** g *(50%)* of **(5S)-[5-3H]-5-azidopntanoic** acid as **a** colorless oil: TLC (Si02,I :I hexane:ethyl acetate, **Rf** = **0.32); 'ti NMR: 6 9.0 (1** H, broad **s,** COOH), **3.2 (2** H, t, CHZN~), **2.4 (2** H, t, CH2COOH). 1 **4-2.0 (4 H,** m). The acid could not **be** distilled without decomposition and it gave no molecular ion on electron impact.

$N-(5S)$ - $[5-3H]$ -5-Azidopentanoyl}-(4S)-4-benzyl-2-oxazolidinone (9).

(SS)-[5-3HJ-5-Azidopentanoic acid **(7.0.61 g. 4.2** mM) was dissolved in dry benzene **(25** mL), the solution cooled in an ice-bath, and oxalyl chloride **(0.74** mL, **8.5** mM) added dropwise with stirring. The cooling bath was removed and the mixture stirred at room temperature for **17** h. The solution was then concentrated *in vacuo* and the residual oxalyl chloride chased out of the reaction mixture with dry THF **(3 x 10** mL). Finally, the residual acid chloride was dissolved in *dry* **THF** (5 mL) in preparation **for** the next step. **(-)-(4S)-Benzyl-2-oxazolidinone** (I **.I2** g, **6.3** mM) was dissolved in dry THF *(25* mL), the solution cooled to **-78"** C, and n-butyl lithium **(2.53** mL of **2.5** M solution in hexane, 6.3 mM) added dropwise with stirring under N₂. After 20 min stirring at -78[°], the THF solution of the crude acid chloride was added at **-78".** and stirring at this temperature continued for **30** min. The reaction temperature was then raised to 0" and stirring continued for **30 min.** Excess saturated aqueous NH₄Cl solution was added, the mixture concentrated *in vacuo*, and the residue partitioned between ether and saturated aqueous NaHCO3. After repeated extractions, the combined ether phases were dried (MgSOd), and the solvent removed *in vucw.* **The** crude product was purified by flash chromatography (Sic, hexane:ethyl acetate, *5:* **1)** to yield *9* as a colorless oil **(0.72** g, **56%** yield from 7; sp. act. = 4.88 mCi/mM): TLC (SiO₂, hexane:ethyl acetate, 5:1, R_f = 0.25); ¹H NMR **(300** MHz): 6 **7.3** *(5* H, m, **ArH), 4.6** (1 H, m, AICH~CH), **4.1 (2** H, d, CH20CO). **3.2 (2** H, t, CHZN~), **2.9 (2** H, m, ArCH2). **2.7 (2** H, **t,** CH2CH2CO). **1.5-1.9 (4** H, **m);** l3C NMR **(75** MHz): **6 172.5, 153.3. 135.1, 129.3, 128.8, 127.2, 66.1, 54.9. 50.9, 37.7, 34.8, 28.1, 21.2; 13C** NMR (DEPT): CH: **129.3, 128.8, 127.2. 54.9;** CA2: **66.1, 50.9, 37.7, 34.8, 28.1, 21.2.** The product could not be distilled and gave no molecular ion on electron impact.

 $N-(2S),(5S)$ - $[5-3H]-2,5-Diazidopentanoyl)-(4S)-4-benzyl-2-oxazolidinone (11)$. Potassium **bis(trimethy1silyl)amide (0.5** M in toluene, **5.2** mL, **2.6** mM) was diluted with dry THF **(8.4** mL) and the resulting solution cooled to **-78"** C. A solution of **9 (0.72** g, **2.36** mM) in THF **(8.4** mL) precooled to **-78"** was transferred by cannula into the silyl amide **solution** and the mixture stirred for **30 min** at **-78"** under **N2.** A precooled **(-78")** solution of **2,4,6-triisopropylsulfonyl** azide7 **(0.875** g, **2.83** mM) **in** dry THF **(8.4** mL) was then added. After a reaction time of **1-2** min, acetic acid **(0.62** mL. **4.6** eq.) was added and the reaction allowed to stand overnight. Dichloromethane **(30** mL) and brine **(30** mL) were added to the reaction mixture, the two phases separated, and the aqueous phase extracted repeatedly with dichloromethane. The combined organic phases were washed with 0.1 N NaHCO₃ dried (MgSO₄), and the solvent removed *in vacuo* to yield a residue that was purified by flash chromatography: (SiO₂, hexane:ethyl acetate, 5:1) to give 0.38 g of a colorless oil (46%, sp. act. = 6.7 mCi/mM); TLC (5:1 hexane-ethyl acetate, $R_f = 0.17$); ¹H NMR(300 MHz): **6 7.2 (5 H,** m, ArH), **4.9** (1 H, m, COCHN3), **4.7 (1** H, **m,** ArCH2CH), **4.2 (2** H, d, CHzOCO), **3.3 (2** H, t, CHZN~), **2.8 (2** H, q, ArCHz), **1.6-2.0 (4** H, m); 13C NMR **(75** MHz): **6 170.3, 152.7, 134.4, 129.2, 128.8, 127.3,** *66.5,* **59.8, 55.2, 50.4, 37.3, 28.3, 25.3;** I3C NMR (DEPT): CH: **129.2, 128.8, 127.3, 59.8, 55.2;** CH2: **66.5, 50.4, 37.3, 28.3 25.3.** The product could not be distilled and gave no molecular ion **on** electron impact.

(2S),(5S)-[5-3H]-2,5-Diazidopentanoic Acid. Diazido compound **11** was dissolved in a mixture of **THF** and water **(3: 1,26** mL) **and** the solution cooled in **an** ice-bath. The solution was then treated with aqueous lithium hydroxide (1N, 2.6 mL) and stirred for 30 min at 0° under N₂. The reaction was quenched by addition of aqueous NaHC@ (0.5N, **9** mL), the THF removed *in vucuo,* and the mixture extracted with dichloromethane. The aqueous layer was adjusted to pH **2** and the diazido acid removed by repeated extraction with ethyl acetate. The combined ethyl acetate extracts were dried (MgS04) and concentrated *in vucuo* to give the diazido acid as a colorless oil **(0.122** g, **66%):** IH NMR: *6* **4.0** (1 H. 1, CHN3). **3.3 (2** H, 1, CHzN3). **1.6-2.1 (4** H, **m);** 13C NMR **(75 MHz): 175.7,61.3, 50.6, 28.5, 25.1; IR** (neat): **2100,** 1710 cm-l. The acid could not be distilled without decomposition and it gave no molecular ion **on** electron impact.

(SS)-[5-3H]-L-Ornithine **(13). (5S)-[5-3H]-2,5-Diazidopentanoic** acid **(34.5** mg, **0.18** mM) was dissolved in absolute ethanol **(3** mL) and 10% palladium on carbon **(3** mg) added. The diazido acid was reduced under 80 psi of **H2** for a **period** of **12** h. The catalyst was then removed by filtration through Celite and the filtrate taken to dryness *in vacuo.* The crude ornithine was purified by flash chromatography (cellulose, n-butanol:acetic acid:water, 4:2:2). The purified product was a white solid and weighed **32.4** mg **(92%.** sp. act. = 6.5 mCi/mM): TLC (cellulose, n-butanol: acetone: diethylamine: water, 70:70:35:70, R_f = 0.33); identical R_f and ninhydrin color was exhibited by authentic ornithine; ¹H NMR(D₂O): δ 3.83 (1 H, t, CHNH₂), 3.07 (2 H, t, CH₂NH₂), **1.90 (4** H, **m).**

(5R)-[5-3H]-L-Ornithine **(14).** (SR)-[5-3H]-L-Ornithine **(14)** was synthesized from (1RS)- [1-3H]-5-hexenol (la) in a manner that was identical to that employed toprepare **(5S)-[5-3H]-** L-omithine **(13)** except for the fact that R-Alpine Borane was utilized to reduce [formyl- $\frac{3H}{1}$] 5-hexenal.

Stereospecificity of the Evans Azidation Reaction. **In** order to determine the stereospecificity of the Evans azidation reaction, the synthesis of unlabeled L-ornithine was carried out according to the preceding reaction conditions, with omission of the steps involved in the introduction of the mtium label. The L-omithine so obtained was converted to its monohydrochloride and the rotation measured: $[\alpha]_D +7.2$ (c = 2, H₂O); lit.: $[\alpha]_D +11.0$ (c = 5.5, H₂O).¹⁴

Analysis of Chirality of $(1S)-(^2H_1)-5-Hexen-1-ol.$

5-Hexenoic Acid (15). Pyridinium dichromate **(13.2** g, **35** mM) was suspended in **25** mL of DMF and 5-hexenol (1.0 g, 10 mM) was added with stirring under N_2 . The mixture was stirred overnight and then diluted with water (250 mL). After repeated extraction with ether, the combined ether layers were extracted with excess 10% aq. NaHCO3. The aqueous extract was acidified with **3N** HCI to pH **4** and the liberated 5-hexenoic acid recovered by repeated extraction with ether. The combined ether extracts were washed twice with water, dried (MgS04), and the solvent removed *in* vacuo at room temperature to give the crude acid (0.98 g, 50%) which was pure enough to be used in the next step: TLC $(SiO₂, n-hexane:ethyl acetate, 4:1, R_f = 0.23); ¹H NMR: δ 8.0 (1 H, bs, COOH),$ **5.8** (1 H, m, vinyl H), 5.0 (2 H, m, vinyl H), **2.3** (2 H, t, CH?), **2.1 (2** H, t, CH2), 1.8 **(2** H. m, $CH₂$).

 $(1-2H_2)$ -5-Hexen-1-ol. 5-Hexenoic acid $(0.98 \text{ g}, 8.6 \text{ mM})$ was added dropwise at 0° over a 10 min period to a suspension of lithium aluminum deuteride (0.36 g, 8.6 mM) in anhydrous ether **(15** mL) **stirred** under N2. The ice-bath was then removed and the mixture allowed to warm to room temperature. Stirring at room temperature was continued for 3 h, at the end of which time the mixture was cooled in an ice-bath. The excess hydride was quenched by successive addition of water (0.36 mL) , 15% aq. NaOH (0.36 mL) and water (1.08 mL) with continuous stirring. After an additional 30 min of stirring, the granular precipitate was removed by vacuum filtration, and the precipitate was washed thoroughly with ether. The combined ether phases were washed with excess 10% aq. NaHCO₃ and then dried (MgSO₄). Removal of the solvent *in vacuo* at room temperature gave (1-2H2)-5-hexen-1-ol (0.21 g, *50%);* IH NMR : 6 6.0-5.5 (1 H, m, vinyl H), **5.0** (2 H, **m,** vinyl H), 2.0 (2 H, m, allylic CH₂), 1.8-1.4 (4 H, CH₂CH₂); complete deuteration at C-1 was indicated by the absence of a signal for $C-1$ at 3.6 δ . The alcohol was used without additional purification.

(lS)-(1-2H l)-S-Hexen-l-ol (17). Pyridinium chlorochromate (0.66 g, **3.1 mM)** was suspended in dichloromethane (8 mL) and $(1.2H_2)$ -5-hexenol $(0.21 \text{ g}, 2.1 \text{ mM})$ was added with stirring under nitrogen. The mixture was stirred in an ice-bath for 14 h and sufficient ether was then added to cause precipitation of most of the chromium salts. The supernatant was passed through a Florisil column in order to eliminate the remaining chromium salts, and the **column** was washed with additional ether to ensure complete elution of the $(formy-²H₁)$ -5-hexenal. Since the labeled aldehyde is quite volatile, most of the ether was then removed by careful distillation at *ca.* **40".** The undistilled residue was dissolved in *dry* THF (10 mL) and the resulting solution was added dropwise with stirring under **N2** to a THF solution of R-Alpine Borane **(0.5M.** 4.1 mL). The reaction mixture was stirred at **room** temperature for 10 min and then refluxed 2 h. The reaction mixture was cooled and the solvent removed *in vacuo*. The residue was dissolved in *dry* ether and the solution cooled in ice. Ethanolamine (0.13 mL, 1.1 eq.) was added and the mixture stirred 20 min at ice-bath temperature. The white precipitate that fonned was removed by vacuum filtration, and the filtrate was concentrated *in vacuo* to give a yellowish oil that was purified by flash chromatography (SiO₂, n-hexane:ethyl acetate, **4:l)** to give (**1S)-(l-2H1)-5-hexen-l-ol** (53.3 mg, 33%); IH NMR: 6 6.0-5.5 (1 H, m, vinyl H), 5.0 (2 H, m, vinyl H), 3.6 (I H, bs, CHDOH), 2.0 (2 H, m. allylic CH2), 1.8-1.4 (4 H, m, $CH₂CH₂$).

(-)-Camphanate Ester of **(lS)-(*H 1)-5-Hexen-l-ol (18).** To a stirred solution of alcohol **17** *(25* mg, 0.25 mM) in dichloromethane *(5* **mL),** (-)camphanoyl chloride *(60* mg, 0.28 mM) was added. This was followed by triethylamine **(39** uL, **0.27** mM) and a catalytic amount of **4-dirnethylaminopyridine (10** mol %). The reaction was allowed to proceed at room temperature for **24** h and water was then added. The organic phase was separated, washed with water, and dried (Na2S04). Removal of the solvent *in vucuo* gave the crude ester, which was purified by flash chromatography (Si@, n-hexane:ethyl acetate, 6: **1)** to yield the pure ester **18 (59.4** mg, **85%)** as a colorless oil; TLC (SiO₂, n-hexane:ethyl acetate, 6:1, $R_f = 0.48$); ¹H NMR (300 MHz) δ 5.7 (1 H, m, vinyl H), 5.0 **(2** H, m, vinyl H), **4.2** (1 H, t, CHDOH), **2.4 (1** H, m), **2.1-1.8 (4** H, m). **1.5** (2 H, m), 1.1 **(3** H, s. CH3), 1.0 **(3** H, **s,** CH3). **0.9 (3** H, **s,** CH3); I3C NMR **(75** MHz) 6 **178.1, 167.5, 138.0,** 114.9, **98.0, 91.1, 65.5, 54.7,** 54.1, **33.1, 30.6, 28.9, 27.9, 25.0, 16.72, 16.69, 9.65;** I3C NMR (DEPT) CH2: **114.9. 65.5. 33.1, 28.9, 27.9, 25.0;** CH: **138.0** CH3: **16.72, 16.68.9.65.** The product could not be distilled, and it gave **no** molecular ion **on** electron impact.

(-1-Camphanate Ester of (1S)-(l-2H1)-l-Hexanol **(19).** The (-) camphanate derivative **18 (34.1** mg, **0.12** mM) was dissolved in ethyl acetate (5 mL) and 10% palladium on carbon **(3.4** mg) was added. Catalytic hydrogenation was carried out at atmospheric pressure and room temperature for a period of **16** h. The catalyst was then removed hy filtration, washed with ethyl acetate, and the combined ethyl acetate fractions taken to dryness *in vacuo* to give the ester **19** as a colorless oil **(30.5** mg, **89%).** TLC (Si@, n-hexancethyl acetate, 6:1, **Rf** = **0.47); IH** NMR **6 4.2** (1 H, t, CHDOH), **2.3 (1** H, m), **2.2-1.8** (2 H, m), **1.9-1.65 (3** H, m), **1.4 (6** H, m), **1.1 (3** H, s, CH3). **1.05 (3** H, **S,** CH3), **0.9 (3** H, **S,** CH3), **0.85 (3** H, t, CHjCH2); I3C NMR **(300** MHz) d **178.0, 167.3, 90.9, 65.0, 53.8, 53.0, 31.0, 30.3, 28.7, 25.2, 22.2, 16.52, 16.47, 13.7. 9.5.** The product could not be distilled, and it gave no molecular ion on electron impact.

Acknowledgment. We are pleased to acknowledge financial support of this work by the National Institutes of Health (Grant **GM26166)** and The Robert **A.** Welch Foundation (Grant C-729). We also thank Professor David Evans for helpful discussions concerning the azidation methodology and the **Arco** Foundation for funds to purchase the IBM **AF-300** NMR spectrometer used in this work.

References

- 1. Parry R. J., Arzu I. Y., Ju S. and Baker B.- J. *Am. Chem. Soc.* 111: 8981 (1989).
- 2. Townsend *C.* **A.,** Ho **M.** and **Mao S.-** *J. Chern.* **SOC.,** *Chern. Commun.* **638 (1986).**
- **3.** Midland M.. Tramontano **A.** and Zderic S. **A.** *J. Am. Chern.* **SOC. 99: 521 1 (1977).**
- **4.** March, **J.,** *Advanced Organic Chemistry,* McGraw-Hill, Inc., New **York,** New **York, 1977,** p. **102.**
- 5. Carlsen P. H., Katsuki T., Martin V. **S.** and Sharpless K. B. *J. Org. Chem.* **46: 3936 (1981).**
- **6.** Evans **D.** A., Chapman K. T., and Bisaha J. J. *Am. Chem. SOC.* **110: 1238 (1988).**
- **7.** Evans D. A., Britton T. C., Ellman J. **A,,** and Dorow R. L. J. *Am. Chem. SOC.* **112: 401 1** (1 **990).**
- 8. Corey E. J. and Schmidt G. *Tetrahedron Lert.* **5399 (1979).**
- **9.** Among the examples are the following: Parry R. J. J. *Chem.* **SOC.,** *Chem. Commun.* **294 (1978);** Parry **R. J.** and Trainor D. A. - J. *Am. Chem. SOC.* **100: 5243 (1978);** Aberhan D. **J.,** Lin H. J. and Weiller B. H. - *fbid.* **104: 871 (1982);** Aberhan **D. J.,** Gould **S.** J., Lin H.. Thiruvengadam T. K. and Weiller B. H. - *fbid.* **105: 5461 (1983);** Schwab **J. M.** and Klassen J. B. - *fbid.* **106, 7217 (1984).**
- 10. Gerlach H. and Zagalak B. J. *Chem. SOC., Chem. Commun.* **274 (1973).**
- **11.** Representative examples are: Fuganti C., Ghiringhelli D., and Grasselli P. J. *Chem. SOC., Chem. Commun.* **846 (1975);** Cane D. E. and Murthy P. P. N. - *J. Am. Chem. SOC.* **99: 8327 (1977);** Coates R. M. and Cavender P. L. - *fbid.* **102: 6358 (1980);** Schwab **J.** M. - *fbid.* **103: 1876 (1981);** Kobayashi K., Jadhav P. K., Zydowsky T. M. and Floss H. G. - *J. Org. Chem.* **48: 3510 (1983);** Prabhakaran P. C., Gould S. J., *Orr,* G. R. and Coward J. K. - *J. Am. Chern. SOC.* **110: 5779 (1988).**
- 12. The R-Alpine Borane is prepared commercially from (R)-(+)-a-pinene of *ca.* **91%** optical purity.
- **13.** Ashby, E. C. and Oswald, J. J. *Org. Chem.* **53, 6068 (1988).**
- **14.** Weast, **E.** C., *ed., Handbook of Chemistry and Physics,* 56th edition, CRC Press, Cleveland, Ohio, **1975,** p. C-402.